4 – Tree-based Regression Models

4.1 - Introduction and Motivation

Tree-based modelling began as a primarily exploratory technique for uncovering structure in data. Specifically, the technique is useful for classification and regression problems where one has a set of predictor variables  and a single response . When is nominal or ordinal (i.e non-numeric) then classification rules are determined from the given set of predictors which can be any mixture of data types, e.g.,



When the response is numeric, then regression tree rules for prediction are of the form:



The first tree models were called CART models, (Classification And Regression Trees) and were fit using an algorithm called recursive partitioning which is described in the case of regression trees in the next section.  As computing power has increased there has been work on improving the performance of tree-based models.  We will certainly examine these improvements as these tend to produce among the best, if not the best, off-the-shelf predictive models.   Thus tree-based models have become quite popular.

Some additional reasons for their popularity:

1. In certain applications, especially where the set of predictors contains a mix of numeric variables and factors, tree-based models are sometimes easier to interpret and discuss than linear models.

2. Tree-based models are invariant to monotone transformations of predictor variables, thus the precise form in which these appear in the model is irrelevant.  As we have seen in several earlier covered methods and associated examples this is a particularly appealing property!!

3. Tree-based models are more adept at capturing non-additive behavior; the standard MLR model does not allow interactions between variables unless they are pre-specified and of a particular multiplicative form.  We saw that in the MLR models we developed for the diamond price data.  Tree-models because of the way they are constructed naturally have interactions, typically lots of them!

4. Tree-based models can be “combined” to produce very powerful prediction machines.



4.2 - Regression Trees and Recursive Partitioning

The form of the fitted surface or smooth obtained from a regression tree is 



where the  are constants and the are regions defined a series of binary splits.  If all the predictors are numeric these regions form a set of disjoint hyper-rectangles with sides parallel to the axes such that 


Regardless of how the neighborhoods are defined if we use the least squares criterion for each region 


the best estimator of the response, , is just the average of the  in the region , i.e.

.


Thus to obtain a fitted regression tree model we need to somehow obtain the neighborhoods This is accomplished by an algorithm called recursive partitioning, see Breiman et al. (1984). We present the basic idea below though an example for the case where the number of neighborhoods  and the number of predictor variables  The task of determining neighborhoods  is solved by determining a split coordinate or variate , i.e. which variable to split on, and split point .  A split coordinate and split point define the rectangles  as



The residual sum of squares (RSS) for a split determined by  is



The goal at any given stage is to find the pair  such that  is minimal or the overall RSS is maximally reduced. This may seem overwhelming, however this only requires examining at most  splits for each variable because the points in a neighborhood only change when the split point crosses an observed value. If we wish to split into three neighborhoods, i.e. split or after the first split, we have possibilities for the first split and possibilities for the second split, given the first split. In total we have operations to find the best splits for neighborhoods. In general for  neighborhoods we have,



possibilities if all predictors are numeric! This gets too big for an exhaustive search, therefore we use the technique for recursively. This is the basic idea of recursive partitioning. One starts with the first split and obtains as explained above. This split stays fixed and the same splitting procedure is applied recursively to the two regions . Thus it is a greedy algorithm as previous choices are not reconsidered once they are made.  This procedure is then repeated until we reach some stopping criterion such as the nodes become homogenous or contain very few observations. The rpart function uses two such stopping criteria. A node will not be split if it contains fewer minsplit observations (default =20). Additionally we can specify the minimum number of  observations in terminal node by specifying a value for minbucket (default = ).

The figures below are from pg. 306 of Elements of Statistical Learning (Hastie, et al.) show a hypothetical tree fit based on two numeric predictors .
 
 [image: ]




Example 4.1: Ozone Levels in L.A. Basin
Let's examine these ideas using ozone pollution data for the Los Angeles Basin. For simplicity we consider the case where . Here we will develop a regression tree using rpart for predicting upper ozone concentration using the temperature at Sandburg Air Force Base (safb) and inversion base height (inbh). 

> Ozdata = read.table(file.choose(),header=T,sep=”,”)
> library(rpart)
> oz.rpart <- rpart(upoz ~ inbh + safb,data=Ozdata)
> summary(oz.rpart)
> plot(oz.rpart)
> text(oz.rpart)
[image: ]
> post(oz.rpart,"Regression Tree for Upper Ozone Concentration")

Plot the fitted surface 
> x1 = seq(min(Ozdata$inbh),max(Ozdata$inbh),length=100) 
> x2 = seq(min(Ozdata$safb),max(Ozdata$safb),length=100) 
> x = expand.grid(inbh=x1,safb=x2) 
> ypred = predict(oz.rpart,newdata=x)
> persp(x1,x2,z=matrix(ypred,100,100),theta=45,xlab="INBH",
ylab="SAFB",zlab="UPOZ")
[image: ]

> plot(oz.rpart,uniform=T,branch=1,compress=T,margin=0.05,cex=.5)
> text(oz.rpart,all=T,use.n=T,fancy=T,cex=.7)
> title(main="Regression Tree for Upper Ozone Concentration")
[image: ]
> prp(oz.rpart,main="Tree for Upper Ozone Concentration",type=4)
[image: ]


Example 4.2: Diamond Prices
[image: ]
To begin we will load libraries for fitting and plotting trees and we again form training, validation, and test data sets based on Test variable in the Diamonds data set.

> library(rpart)
> library(rpart.plot)
> Diamonds = read.table(file.chooseIO,header=T,sep=”,”)
> names(Diamonds)
 [1] "Price"   "Carats"  "Color"   "Clarity" "Depth"   "Table"   "Cut"     "TDdiff" 
 [9] "TDratio" "Test"  
 
> table(Diamonds$Test)
   0    1    2 
1613  539  538 


> diam.train = Diamonds[Diamonds$Test==0,-10]
> diam.valid = Diamonds[Diamonds$Test==1,-10]
> diam.test = Diamonds[Diamonds$Test==2,-10]

Fit a preliminary tree model with the default settings (i.e. tuning parameters).

> tree1 = rpart(Price~.,data=diam.train)
> prp(tree1,type=3,main=”Regression Tree for Diamond Prices”)

[image: ]
> summary(tree1)
Call:
rpart(formula = Price ~ ., data = diam.train)
  n= 1613 

           CP nsplit rel error    xerror        xstd
1  0.62641917      0 1.0000000 1.0013290 0.030195774
2  0.05266618      1 0.3735808 0.3803366 0.014950445
3  0.05202894      2 0.3209147 0.2763722 0.012340517
4  0.05119268      3 0.2688857 0.2705374 0.012251444
5  0.02757021      4 0.2176930 0.2290717 0.010087800
6  0.01653198      5 0.1901228 0.1987306 0.009088610
7  0.01341838      6 0.1735908 0.1854338 0.008643600
8  0.01037896      7 0.1601725 0.1748261 0.008552891
9  0.01034023      8 0.1497935 0.1748261 0.008552891
10 0.01000000      9 0.1394533 0.1719344 0.008476092

Variable importance
 Carats   Color Clarity   Depth  TDdiff   Table 
     61      19      17       1       1       1 

Node number 1: 1613 observations,    complexity param=0.6264192
  mean=3934.667, MSE=5707547 
  left son=2 (898 obs) right son=3 (715 obs)
  Primary splits:
      Carats  < 0.945     to the left,  improve=0.626419200, (0 missing)
      Color   splits as  LLLRRRRR, improve=0.061002450, (0 missing)
      Clarity splits as  LRRRRLR, improve=0.044188650, (0 missing)
      Depth   < 62.75     to the right, improve=0.003738784, (0 missing)
      TDratio < 1.066896  to the left,  improve=0.002396600, (0 missing)
  Surrogate splits:
      Color   splits as  LLLRRRRR, agree=0.691, adj=0.303, (0 split)
      Clarity splits as  LRRLLLL, agree=0.663, adj=0.241, (0 split)
      Table   < 60.5      to the left,  agree=0.561, adj=0.010, (0 split)
      Depth   < 58.5      to the right, agree=0.560, adj=0.007, (0 split)
      TDdiff  < -9.85     to the right, agree=0.559, adj=0.006, (0 split)

Node number 2: 898 observations,    complexity param=0.05266618
  mean=2247.445, MSE=1295045 
  left son=4 (670 obs) right son=5 (228 obs)
  Primary splits:
      Carats  < 0.735     to the left,  improve=0.41692160, (0 missing)
      Cut     splits as  LLRL, improve=0.01407325, (0 missing)
      Clarity splits as  LLLLLLR, improve=0.01039031, (0 missing)
      TDratio < 0.9390058 to the right, improve=0.01037088, (0 missing)
      TDdiff  < -3.85     to the right, improve=0.01006658, (0 missing)
  Surrogate splits:
      Color   splits as  LLLLLLLR, agree=0.754, adj=0.031, (0 split)
      TDdiff  < -9.55     to the right, agree=0.748, adj=0.009, (0 split)
      TDratio < 0.8623332 to the right, agree=0.748, adj=0.009, (0 split)

Node number 3: 715 observations,    complexity param=0.05202894
  mean=6053.723, MSE=3183688 
  left son=6 (435 obs) right son=7 (280 obs)
  Primary splits:
      Carats  < 1.175     to the left,  improve=0.21042260, (0 missing)
      Clarity splits as  RLLRRRR, improve=0.18706960, (0 missing)
      Color   splits as  RRRRLLLL, improve=0.08024459, (0 missing)
      Cut     splits as  RLRL, improve=0.02706446, (0 missing)
      Table   < 58.5      to the right, improve=0.01169681, (0 missing)
  Surrogate splits:
      Color   splits as  LLLLLLRL, agree=0.635, adj=0.068, (0 split)
      Depth   < 58.05     to the right, agree=0.613, adj=0.011, (0 split)
      TDdiff  < 4.05      to the left,  agree=0.613, adj=0.011, (0 split)
      TDratio < 1.066558  to the left,  agree=0.613, adj=0.011, (0 split)
      Table   < 53.5      to the right, agree=0.610, adj=0.004, (0 split)

Node number 4: 670 observations,    complexity param=0.01341838
  mean=1818.799, MSE=529807.9 
  left son=8 (330 obs) right son=9 (340 obs)
  Primary splits:
      Carats  < 0.535     to the left,  improve=0.34800920, (0 missing)
      Clarity splits as  RLLLLRR, improve=0.02850527, (0 missing)
      Cut     splits as  LLRL, improve=0.01868145, (0 missing)
      Color   splits as  RRLLLLLL, improve=0.01772654, (0 missing)
      Depth   < 62.75     to the right, improve=0.01086100, (0 missing)
  Surrogate splits:
      Clarity splits as  LRRLRLL, agree=0.696, adj=0.382, (0 split)
      Color   splits as  LLLRRRRR, agree=0.601, adj=0.191, (0 split)
      TDdiff  < -5.55     to the left,  agree=0.536, adj=0.058, (0 split)
      TDratio < 0.9002426 to the left,  agree=0.536, adj=0.058, (0 split)
      Depth   < 62.55     to the right, agree=0.533, adj=0.052, (0 split)

Node number 5: 228 observations
  mean=3507.066, MSE=1417194 

Node number 6: 435 observations,    complexity param=0.05119268
  mean=5397.055, MSE=2586490 
  left son=12 (267 obs) right son=13 (168 obs)
  Primary splits:
      Clarity splits as  RLLRRRR, improve=0.41888210, (0 missing)
      Color   splits as  RRRRLLLL, improve=0.28377810, (0 missing)
      Cut     splits as  RLRL, improve=0.02613429, (0 missing)
      Depth   < 62.75     to the right, improve=0.01424792, (0 missing)
      Table   < 58.5      to the right, improve=0.01094202, (0 missing)
  Surrogate splits:
      Color   splits as  LLRLLLLR, agree=0.634, adj=0.054, (0 split)
      Carats  < 0.955     to the right, agree=0.618, adj=0.012, (0 split)
      TDdiff  < -8.2      to the right, agree=0.616, adj=0.006, (0 split)
      TDratio < 0.8702553 to the right, agree=0.616, adj=0.006, (0 split)

Node number 7: 280 observations,    complexity param=0.01653198
  mean=7073.904, MSE=2400789 
  left son=14 (192 obs) right son=15 (88 obs)
  Primary splits:
      Carats  < 1.495     to the left,  improve=0.22641050, (0 missing)
      Color   splits as  RRRRRRLL, improve=0.13375920, (0 missing)
      Clarity splits as  RRLRRRR, improve=0.04623199, (0 missing)
      TDdiff  < 1.35      to the left,  improve=0.02091462, (0 missing)
      TDratio < 1.022955  to the left,  improve=0.02091462, (0 missing)
  Surrogate splits:
      Depth   < 62.85     to the left,  agree=0.700, adj=0.045, (0 split)
      TDdiff  < -8.05     to the right, agree=0.696, adj=0.034, (0 split)
      TDratio < 0.8737384 to the right, agree=0.696, adj=0.034, (0 split)
      Table   < 63.5      to the left,  agree=0.693, adj=0.023, (0 split)

Node number 8: 330 observations
  mean=1382.948, MSE=143196.6 

Node number 9: 340 observations
  mean=2241.829, MSE=541715.1 

Node number 12: 267 observations
  mean=4571.397, MSE=697765.4 

Node number 13: 168 observations,    complexity param=0.02757021
  mean=6709.262, MSE=2782891 
  left son=26 (53 obs) right son=27 (115 obs)
  Primary splits:
      Color   splits as  RRRRRLLL, improve=0.54289830, (0 missing)
      Depth   < 61.35     to the right, improve=0.03768856, (0 missing)
      Clarity splits as  R--RLRR, improve=0.02350434, (0 missing)
      Cut     splits as  RLRL, improve=0.01326847, (0 missing)
      Carats  < 1.095     to the right, improve=0.01222508, (0 missing)
  Surrogate splits:
      Carats  < 1.075     to the right, agree=0.708, adj=0.075, (0 split)
      TDdiff  < 3.35      to the right, agree=0.696, adj=0.038, (0 split)
      TDratio < 1.056732  to the right, agree=0.696, adj=0.038, (0 split)
      Depth   < 58.6      to the left,  agree=0.690, adj=0.019, (0 split)

Node number 14: 192 observations,    complexity param=0.01037896
  mean=6574.771, MSE=2006238 
  left son=28 (50 obs) right son=29 (142 obs)
  Primary splits:
      Color   splits as  RRRRRRLL, improve=0.24805840, (0 missing)
      Clarity splits as  RRLRRRR, improve=0.19357610, (0 missing)
      Cut     splits as  RLRL, improve=0.07074066, (0 missing)
      Depth   < 62.75     to the right, improve=0.03307478, (0 missing)
      TDdiff  < -2.55     to the right, improve=0.02199928, (0 missing)
  Surrogate splits:
      Carats < 1.365     to the right, agree=0.755, adj=0.06, (0 split)
      Depth  < 59.05     to the left,  agree=0.750, adj=0.04, (0 split)

Node number 15: 88 observations
  mean=8162.92, MSE=1532107 

Node number 26: 53 observations
  mean=4898.679, MSE=865713.8 

Node number 27: 115 observations
  mean=7543.704, MSE=1459339 

Node number 28: 50 observations
  mean=5385.92, MSE=929906.1 

Node number 29: 142 observations,    complexity param=0.01034023
  mean=6993.38, MSE=1712330 
  left son=58 (49 obs) right son=59 (93 obs)
  Primary splits:
      Clarity splits as  RRLRRRR, improve=0.39150570, (0 missing)
      Color   splits as  RRLRLL--, improve=0.09441569, (0 missing)
      Depth   < 62.55     to the right, improve=0.07979308, (0 missing)
      Cut     splits as  RLRL, improve=0.04604033, (0 missing)
      Carats  < 1.245     to the left,  improve=0.03852810, (0 missing)
  Surrogate splits:
      Depth   < 59.75     to the left,  agree=0.683, adj=0.082, (0 split)
      TDdiff  < -7.45     to the left,  agree=0.683, adj=0.082, (0 split)
      TDratio < 0.8807051 to the left,  agree=0.683, adj=0.082, (0 split)
      Carats  < 1.365     to the right, agree=0.676, adj=0.061, (0 split)
      Color   splits as  LLLRRR--, agree=0.676, adj=0.061, (0 split)

Node number 58: 49 observations
  mean=5865.388, MSE=539400.8 

Node number 59: 93 observations
  mean=7587.699, MSE=1306724


Viewing the tree is certainly easier in graphical form!!  We can plot the fitted values vs. the actual prices and the residuals vs. fitted values as we did in MLR.

> par(mfrow=c(1,2))
> plot(diam.train$Price,predict(tree1),xlab="Actual Price",ylab="Fitted Values")
> abline(0,1)
> plot(predict(tree1),resid(tree1),xlab="Fitted Values",ylab="Residuals")
> abline(h=0)
[image: ]
> par(mfrow=c(1,1))
This tree seems too simplistic and underfits, thus we should force the algorithm to consider larger trees.  This most easily done by making the complexity parameter (cp) smaller.  The complexity parameter penalizes the RSS for tree based upon the number of terminal nodes according to the formula below:


where,














> tree2 = rpart(Price~.,data=diam.train,control=rpart.control(cp=.0001))
> prp(tree2,main=”Large Regression Tree for Diamond Prices”,cex=0.5)
[image: ]YIKES!






Below are a plot of the fitted vs. actual response values and a plot of the residuals vs. fitted values.  This model does a much better job of matching the actual response values, possibly overfitting, and nonconstant variation is the response is evident in the residuals.

> par(mfrow=c(1,2))
> plot(diam.train$Price,predict(tree2),xlab="Actual Price",
ylab="Fitted Price")
> abline(0,1,lwd=2,col=”blue”)
> plot(predict(tree2),resid(tree2),xlab=”Fitted Values”,ylab=”Residuals”)
> abline(h=0,lwd=2,col=”red”)
[image: ] 
> par(mfrow=c(1,1))


We can compare these two trees by comparing their predictive performance on the validation cases.  The prediction accuracy can be measured using several metrics and the function below will compute RMSEP, MAE, and MAPE given the actual and predicted response values.

PredAcc = function(y,ypred){
    RMSEP = sqrt(mean((y-ypred)^2))
    MAE = mean(abs(y-ypred))
    MAPE = mean(abs(y-ypred)/y)*100
    cat("RMSEP\n")
    cat("===============\n")
    cat(RMSEP,"\n\n")
    cat("MAE\n")
    cat("===============\n")
    cat(MAE,"\n\n")
    cat("MAPE\n")
    cat("===============\n")
    cat(MAPE,"\n\n")
    return(data.frame(RMSEP=RMSEP,MAE=MAE,MAPE=MAPE))
}





Prediction accuracy of the base tree model (cp = .01, the default setting)
> ypred = predict(tree1,newdata=diam.valid)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
1000.356 

MAE
===============
742.0048 

MAPE
===============
20.95349 

     RMSEP      MAE     MAPE
1 1000.356 742.0048 20.95349


Prediction accuracy of the larger tree model (cp = .0001)
> ypred2 = predict(tree2,newdata=diam.valid)
> PredAcc(diam.valid$Price,ypred2)
RMSEP
===============
673.6085 

MAE
===============
444.1392 

MAPE
===============
11.17317 

     RMSEP      MAE     MAPE
1 673.6085 444.1392 11.17317

> bestMLR = lm(log(Price)~poly(Carats,3)+Clarity*Color + Cut + TDdiff + TDratio,data=diam.train)
> ypredlog = predict(best.MLR,newdata=diam.valid)
> ypredMLR = exp(ypredlog)
> PredAcc(diam.valid$Price,ypredMLR)
RMSEP
===============
493.787 

MAE
===============
333.2352 

MAPE
===============
8.160273 

Tree models are invariant to predictor transformations but not the response, thus we can consider using  as the response as we did in MLR models fit to these data.

> tree3 = rpart(log(Price)~.,data=diam.train,cp=.0001)
> ypredlog = predict(tree3,newdata=diam.valid)
> ypred3 = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred3)
RMSEP
===============
662.5886 

MAE
===============
428.2071 

MAPE
===============
10.53469 

The log transformation improved performance of the tree model, however it did not do as well as the MLR model using diamond price in the log scale.

The rpart function will perform internal 10-fold cross validation to help us choose an “optimal” cp value.  The function plotcp will plot the cross-validation error vs. the cp and give table of the results.  To use it effectively fit a base model with a very small cp value (.0001 or even smaller) and then use plotcp to find the optimal setting for cp.
> tree4 = rpart(log(Price)~.,data=diam.train,cp=.0001)
> plotcp(tree4)
[image: ]Optimal cp around here?


> tree.opt = rpart(log(Price)~.,data=diam.train,cp=.00058)
> ypredlog = predict(tree.opt,newdata=diam.valid)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
750.3385 

MAE
===============
495.6356 

MAPE
===============
11.91246 

Hmmm… the 10-fold cross-validation suggests a cp that actually decreases predictive performance for the validation data.  We have the validation dataset to assess our models, so let’s try tweaking some more settings (tuning parameters) in the recursive partitioning algorithm.

> ? rpart.control
[image: ]

The parameters minsplit and minbucket are good choices for additional model tuning.

I generally try minsplit before minbucket but both can manipulated. Also minbucket automatically equals minbucket/3 so there is generally no reason to change both.  After experimenting with different settings for cp and minsplit I arrived at the following reasonably good RPART model, however it still falls short of our “best” MLR model.


> tree.opt = rpart(log(Price)~.,data=diam.train,control=rpart.control(cp=.00005,minsplit=5))
> ypredlog = predict(tree.opt,newdata=diam.valid)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
640.7596 

MAE
===============
397.7874 

MAPE
===============
9.706756 

We can use Monte Carlo Split-Sample CV instead of the train/validation/test set approach.  The function below will perform MCCV for an RPART model.

rpart.sscv = function(fit,data,p=.667,B=100,
                      cp=fit$control$cp,minsplit=fit$control$minsplit) {
    MSE = rep(0,B)
    MAE = rep(0,B)
    MAPE = rep(0,B)
    y = fit$y
    n = nrow(data)
    ss <- floor(n*p)
    for (i in 1:B) {
        sam = sample(1:n,ss,replace=F)
        fit2 = rpart(formula(fit),data=data[sam,],cp=cp,minsplit=minsplit)
        ynew = predict(fit2,newdata=data[-sam,])
        MSE[i] = mean((y[-sam]-ynew)^2)
        MAE[i] = mean(abs(y[-sam]-ynew))
        MAPE[i] = mean((abs(y[-sam]-ynew)/y[-sam]))
    }
    RMSEP = sqrt(mean(MSE))
    MAEP = mean(MAE)
    MAPEP = mean(MAPE)
    cat("RMSEP\n")
    cat("===============\n")
    cat(RMSEP,"\n\n")
    cat("MAEP\n")
    cat("===============\n")
    cat(MAEP,"\n\n")
    cat("MAPEP\n")
    cat("===============\n")
    cat(MAPEP,"\n\n")
    temp = data.frame(MSEP=MSE,MAEP=MAE,MAPEP=MAPE)
    return(temp)
}

As the response will be transformed to the log scale for the diamond data, we will need to modify the highlighted lines, so we can measure predictive performance in the original scale.

To make these changes in R, do the following

> temp = edit(rpart.sscv)

An editor window will then open which you can use your mouse to navigate through. 
[image: ]

We can then change the y = fit$y to be y = exp(fit$y) and change ynew = predict(…) to ynew = exp(predict(…)).    (see the above highlighted portions)   Once you are satisfied the temp function you created is working you can give it a more meaningful name.

> rpart.logsscv = temp

As we will be using MCCV to choose an “optimal” model, we start with the full dataset again.
> Diamonds = read.table(file.choose(),header=T,sep=”,”)
> Diamonds = Diamonds[,-10]
> tree1 = rpart(log(Price)~.,data=Diamonds)

> results = rpart.logsscv(tree1,data=Diamonds,cp=.00005,minsplit=5)
RMSEP
===============
592.2878 

MAEP
===============
382.4264 

MAPEP
===============
0.09480442 

> results = rpart.logsscv(tree1,data=Diamonds,cp=.0005,minsplit=5)
RMSEP
===============
685.5508 

MAEP
===============
458.3314 

MAPEP
===============
0.112681

> results = rpart.logsscv(tree1,data=Diamonds,cp=.000025,minsplit=5)
RMSEP
===============
601.4671 

MAEP
===============
387.8461 

MAPEP
===============
0.09645279 

> results = rpart.logsscv(tree1,data=Diamonds,cp=.00005,minsplit=3)
RMSEP
===============
601.7505 

MAEP
===============
386.1854 

MAPEP
===============
0.09610241 

Best I could find using this approach was cp = .00005 and minsplit=5.  We can then run the model on our training and validation cases combined and predict the test cases.

> temp = rbind(diam.train,diam.valid)
> rpart.final = rpart(log(Price)~.,data=temp,cp=.00005,minsplit=5)












> ypredlog = predict(rpart.final,newdata=diam.test)
> ypred.test = exp(ypredlog)

> PredAcc(diam.test$Price,ypred.test)
RMSEP
===============
548.6262 

MAE
===============
348.7335 

MAPE
===============
8.798837 

Still falls short of our best MLR model, but not by much.

Tasks

1. Build a regression tree for Chicago Homes training data set and use it to predict the list prices of homes in the Chicago Homes test set.  Again do not use ZIP code.

> library(rpart)
> library(rpart.plot)

> ChiTrain = read.table(file.choose(),header=T,sep=”,”)
> ChiTest = read.table(file.choose(),header=T,sep=”,”)

> ChiTrain2 = ChiTrain[,-3]
> ChiTest2 = ChiTest[,-3]

> chi.rpart = rpart(log(ListPrice)~.,data=ChiTrain2)
> par(mfrow=c(1,1)
> plot(chi.rpart)
> text(chi.rpart)
> prp(chi.rpart,type=4,digits=4)

What is the prediction accuracy of this default model?



2. Now use the training data along with the rpart.logsscv function to tune your RPART model using cp and  minsplit.  

Who can find the best RPART model for these data using the metrics in the PredAcc function?


3. Using the Diamonds data set run the following code.

Diamonds = read.table(file.choose(),header=T,sep=”,”)
library(rpart)
library(rpart.plot)
fit = rpart(log(Price)~.,data=Diamonds)

Copy the code for the function below into R

tree.vary = function(fit,data) {
    n = nrow(data)
    sam = sample(1:n,floor(n*.5),replace=F)
    temp = rpart(formula(fit),data=data[sam,])
    prp(temp,type=4,digits=3)
}

	> tree.vary(fit,data=Diamonds)

	Then use the arrow keys run the tree.vary function above multiple times.  
             Look at each tree as it is plotted, what do you notice?


4.3 – Ensemble Methods (Bagging, Random Forests, and Boosted Trees)

Bagging for Regression Trees

Suppose we are interested in predicting a numeric response variable


and  


For example, , might come from a MLR model or from a RPART model using x with a complexity parameter cp = .005.  Letting  denote , where the expectation is with respect to the distribution underlying the training sample (since, viewed as a random variable,  is a function of training sample, which can be viewed as a high-dimensional random variable) and not  (which is considered fixed), we have that:


                                              
                                               

Thus in theory, if our prediction could be based on  instead of  then we would have a smaller mean squared error for prediction (and a smaller RMSEP as well).  How can we approximate ?  We could take a large number of samples of size n from the population and fit the specified model to each.  Then average across these samples to get an average model , more specifically we could get the average prediction from the different models for a given set of predictors . Of course, this is silly as we only take one sample of size n in general when conducting any study.  However, we can approximate this via the bootstrap.   The bootstrap involves taking B random samples of size n drawn with replacement from our original sample .  For each bootstrap sample, b, we will obtain an estimated model  and average those to obtain a final estimate of , i.e.

This estimator for  should in theory be better than the one obtained from the training data.  This process of averaging the predicted values from a given  is called bagging.  Bagging works best when the fitted models vary substantially from one bootstrap sample to the next.   Modeling schemes that are complicated and involve the effective estimation of a large number parameters will benefit from bagging most.  Bagging (or model averaging) is an example of what is referred to as an ensemble model in statistical learning, where results from different models are combined, in the case of bagging through averaging.  We will examine other types of ensemble models later in this section.   
More on Bootstrap Sampling in Model Building
The bootstrap in statistics is a method for approximating the sampling distribution of a statistic by resampling from our observed random sample. To put it simply, a bootstrap sample is a sample of size n drawn with replacement from our original sample. 

The bootstrap treats the original random sample as the estimated population () and draws repeated samples with replacement from it.  For each bootstrap sample we can fit our predictive model.
[image: ]
A bootstrap sample for model building problems is illustrated below.

 here the  are the p-dimensional predictor vectors.

 where  is a random selected observation from the original data drawn with replacement.  

We can use the bootstrap sample to calculate any statistic of interest.  This process is then repeated a large number of times (B = 500, 1000, 5000, etc.).

For estimating prediction error we fit whatever model we are considering to our bootstrap sample and use it to predict the response value for observations not selected in our bootstrap sample.  One can show that about 63.2% of the original observations will represented in the bootstrap sample and about 36.8% of the original observations will not be selected.  Can you show this?  Thus we will almost certainly have some observations that are not represented in our bootstrap sample to serve as a validation set, with the selected observations in our bootstrap sample serving as our training set.  For each bootstrap sample we can predict the response for the cases in the validation set (i.e. indices for observations not represented in our bootstrap sample).  Bagging and other ensemble methods will use this idea to estimate predictive performance internally.

Bagging Example: Diamond Data
We have already determined in the previous section that an RPART model with cp = .00005 and minsplit = 5 worked well for these data.  We will now use bagging to hopefully arrive at an even better model the price of a diamond.  For simplicity we will first use smaller  and simpler trees to to illustrate the idea of bagging.   Below are four different trees fit to bootstrap samples drawn from the full Diamonds data frame.  For each tree fit I used cp =.005 and minsplit = 5.

		Tree 1							Tree 2
[image: ][image: ]
                  Tree 3							Tree 4
[image: ]  [image: ]

The bagged tree estimate for diamond price would simply take the average of the fitted values from all four trees obtained from bootstrap samples drawn from the training data.  For predicting the response of a test or validation set, we would obtain the predictions from each of these trees and simply average them.



We now consider using bagging to improve the predictions from RPART applied to one specific (i.e. set of tuning parameters) model fit to our training sample.  The package ipred from CRAN contains a function bagging which will perform bagging on regression trees obtain using RPART.

> library(ipred)

Below we use bagging to fit 10-bootstrap regression trees to a sample drawn from our training data frame diam.train.  The predictions for the cases not appearing in each of the 10 bootstrap samples are used to estimate the RMSEP in the usual way.
 
> diam.train = Diamonds[Diamonds$Test==0,-10]
> diam.valid = Diamonds[Diamonds$Test==1,-10]
> diam.test = Diamonds[Diamonds$Test==2,-10]

Bagging regression trees with 10 bootstrap replications 

> diam.bag = bagging(log(Price)~.,data=diam.train,coob=T,nbagg=10,
  control=rpart.control(cp=.005,minsplit=5,xval=0))
> diam.bag

Bagging regression trees with 10 bootstrap replications 
Call: bagging.data.frame(formula = log(Price) ~ ., data = diam.train, 
    control = rpart.control(cp = 0.005, minsplit = 5, xval = 0), 
    coob = T, nbagg = 10)

Out-of-bag estimate of root mean squared error:  0.1855  RMSEP estimate (LOG SCALE!!)

Recall that the final estimated bagged estimate () is the average of the predictions from the 10-bootstrap regression trees, i.e.

[image: ]
As we can see the regression trees fit to the 10 bootstrap samples differ to some degree.
Increasing the number of bootstrap samples used () should improve the performance of the bagged estimate of the regression tree.   

How well does this simple bagged estimate work?  Let’s use it to predict the prices in the validation cases in the original scale using a bagged model using  trees.

> ypredlog = predict(diam.bag,newdata=diam.valid)
> ypred = exp(ypredlog)

> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
894.8456 

MAE
===============
619.428 

MAPE
===============
15.00576

Well if this is your first impression of bagging (which I assume it is), your conclusion is probably that bagging stinks!  This is far worse than any of the other models we have developed for these data.  Before we throw bagging out the window, consider that (1) we haven’t fit very good trees (too small) and (2) we have only used B = 10 models in our averaging.   Let’s use the tuning parameters we chose earlier (cp = .00005, minsplit = 5) and increase the number of trees being averaged (i.e. bagged).

> diam.bag2 = bagging(log(Price)~.,data=diam.train,coob=T,nbagg=25,
control=rpart.control(cp=.00005,minsplit=5,xval=0))

> diam.bag2

Bagging regression trees with 25 bootstrap replications 

Call: bagging.data.frame(formula = log(Price) ~ ., data = diam.train, 
    coob = T, nbagg = 25, control = rpart.control(cp = 5e-05, 
        minsplit = 5, xval = 0))

Out-of-bag estimate of root mean squared error:  0.1117

The out-of-bag estimate of the RMSEP comes from predicting the cases not selected in of the 25 bootstrap samples used in the bagging process.




> diam.bag2 = bagging(log(Price)~.,data=diam.train,coob=T,nbagg=100,
control=rpart.control(cp=.00005,minsplit=5,xval=0))

> diam.bag2

Bagging regression trees with 100 bootstrap replications 

Call: bagging.data.frame(formula = log(Price) ~ ., data = diam.train, 
    coob = T, nbagg = 100, control = rpart.control(cp = 5e-05, 
        minsplit = 5, xval = 0))

Out-of-bag estimate of root mean squared error:  0.1036

> diam.bag2 = bagging(log(Price)~.,data=diam.train,coob=T,nbagg=1000,
control=rpart.control(cp=.00005,minsplit=5,xval=0))
> diam.bag2

Bagging regression trees with 1000 bootstrap replications 

Call: bagging.data.frame(formula = log(Price) ~ ., data = diam.train, 
    coob = T, nbagg = 1000, control = rpart.control(cp = 5e-05, 
        minsplit = 5, xval = 0))

Out-of-bag estimate of root mean squared error:  0.1018

  warning this is slow! (3 minutes or so – don’t; run this!)

> diam.bag2 = bagging(log(Price)~.,data=diam.train,coob=T,nbagg=10000,
control=rpart.control(cp=.00005,minsplit=5,xval=0))
> diam.bag2

Bagging regression trees with 10000 bootstrap replications 

Call: bagging.data.frame(formula = log(Price) ~ ., data = diam.train, 
    coob = T, nbagg = 10000, control = rpart.control(cp = 5e-05, 
        minsplit = 5, xval = 0))

Out-of-bag estimate of root mean squared error:  0.1021 


Fortunately we see diminishing returns on the number of bootstrap samples  used in the bagging process.  For larger more complex data than the diamonds data, using  bootstrap samples could be very expensive computationally!


How well do these different bagged trees perform when predicting the validation cases?


> ypredlog = predict(diam.bag2,newdata=diam.valid)
> ypred = exp(ypredlog)

> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
524.4023 

MAE
===============
336.7267 

MAPE
===============
8.289095 


> ypredlog = predict(diam.bag2,newdata=diam.valid)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
525.2738 

MAE
===============
337.7534 

MAPE
===============
8.30029 


> ypredlog = predict(diam.bag2,newdata=diam.valid)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
527.0671 

MAE
===============
338.9526 

MAPE
===============
8.316951 

Below is code for a split-sample Monte Carlo cross-validation function that takes a model from specified using rpart, (not bagging) as an argument.   The function bag.sscv will automatically grab any tuning parameters that have been set in the rpart fit, namely cp, minbucket, and minsplit.  If you did not specify these yourselves it will still grab their default settings.  It will compute the usual prediction measures (RMSEP, MAEP, and MAPEP) but also will save the out-of-bag estimates of the RMSEP from the bootstrap samples used in the bagging process.

We need can also specify the number the fraction of data to using the Monte Carlo split-sample training sets ( by default), the number of Monte Carlo simulations to run ( by default), and the number of bootstrap samples based upon the training data to use in the bagging process ( by default).

Monte Carlo Split-Sample CV code for Bagging Regression Trees
bag.sscv = function(fit,data,p=.667,M=100,B=25,
cp=fit$control$cp,minbucket=fit$control$minbucket,minsplit=fit$control$minsplit) {
    OOBMSE = rep(0,M)
    MSE = rep(0,M)
    MAE = rep(0,M)
    MAPE = rep(0,M)
    y = fit$y
    n = nrow(data)
    ss <- floor(n*p)
    for (i in 1:M) {
         sam = sample(1:n,ss,replace=F)
  fit2 = bagging(formula(fit),data=data[sam,],nbagg=B,coob=T,
  control=rpart.control(cp=cp,
                        minbucket=minbucket,
                        minsplit=minsplit,
                        xval=0))
        ynew = predict(fit2,newdata=data[-sam,])
        OOBMSE[i] = fit2$err
        MSE[i] = mean((y[-sam]-ynew)^2)
        MAE[i] = mean(abs(y[-sam]-ynew))
        MAPE[i] = mean((abs(y[-sam]-ynew)/y[-sam]))
    }
    OOB.RMSEP = mean(OOBMSE)
    RMSEP = sqrt(mean(MSE))
    MAEP = mean(MAE)
    MAPEP = mean(MAPE)
    cat("OOB RMSEP\n")
    cat("===============\n")
    cat(OOB.RMSEP,"\n\n")
    cat("RMSEP\n")
    cat("===============\n")
    cat(RMSEP,"\n\n")
    cat("MAE\n")
    cat("===============\n")
    cat(MAEP,"\n\n")
    cat("MAPE\n")
    cat("===============\n")
    cat(MAPEP,"\n\n")
    temp = data.frame(OOB.RMSEP=OOBMSE,MSEP=MSE,MAEP=MAE,MAPEP=MAPE)
    return(temp)
}
Again add exp() to the lines highlighted if a log transform was used for the response.
> fit = rpart(log(Price)~.,data=Diamonds,cp=.00005,minsplit=5
> bag.logsscv = edit(bag.logsscv)
> results = bag.logsscv(fit,Diamonds,M=25,B=50)

OOB RMSEP
===============    THIS IS IN LOG SCALE!
0.103759 

RMSEP
===============
484.9549 

MAE
===============
311.9162 

MAPE
===============
7.66815      best yet?!?



Tasks

1. Build a bagged regression tree for Chicago Homes training data set and use it to predict the list prices of homes in the Chicago Homes test set.  Again do not use ZIP code.

> library(rpart)
> library(rpart.plot)
> library(ipred)

> ChiTrain = read.table(file.choose(),header=T,sep=”,”)
> ChiTest = read.table(file.choose(),header=T,sep=”,”)

> ChiTrain2 = ChiTrain[,-3]
> ChiTest2 = ChiTest[,-3]

> fit = rpart(log(ListPrice)~.,data=ChiTrain,cp=??,minsplit=??)
> home.bag = bagging(fit,data=ChiTrain,coob=T,nbagg=??,
  control=rpart.control(cp=??,minsplit=??,xval=0))

> ypredlog = predict(home.bag,newdata=ChiTest)
> ypred = exp(ypredlog)
> PredAcc(ChiTest$ListPrice,ypred)

Remember you can use the bag.logsscv() function to help find you tuning parameters.

Who can build the best bagged model?  




Random Forests – these are typically the benchmark for Kaggle ® problems

Random forests are another bootstrap-based method for building trees.  In addition to the use of bootstrap samples to build multiple trees that will then be averaged to obtain predictions, random forests also includes randomness in the tree building process for a given bootstrap sample.  There are two packages (randomForest and party) to fit random forest models in R.

The algorithm for random forests from Elements of Statistical Learning is presented below.

[image: ]

The advantages of random forests are:
· It handles a very large number of input variables (e.g. genetics, QSAR, etc.)
· It estimates the importance of input variables in the model.
· Learning is faster than using the full set of potential predictors.
· Even though bootstrap sample trees will vary some, the predictions from the bootstrap trees will tend to be correlated.  For example, the variables used to form the first split in bootstrap trees will tend to be the same and thus the subsequent trees will tend to be similar and thus correlated.   Correlations between sums of random variables will inflate the variance, thus bagging will not in some cases decrease the variance part of MSE as much as we might think.   In contrast, the trees in a random forest will vary even more than the bootstrap trees due to the random subsets of predictors being considered at each split.  This will lead to trees that will tend to be less correlated and thus the benefit of averaging the random forest trees will be more pronounced than in bagging.




Variable Importance
To measure variable the importance do the following.  For each bootstrap sample we first compute the Out-of-Bag (OOB) error rate, .  Next we randomly permute the OOB values on the  variable  while leaving the data on all other variables unchanged.  If  is important, permuting its values will reduce our ability to predict the response successfully for all of the OOB observations.   Then we make the predictions using the permuted  values and all the other predictors unchanged to obtain , which should be larger than the error rate of the unaltered data.  The raw score for  can be computed by the difference between these two OOB error rates,



Finally, average the raw scores over all the B trees in the forest, i.e. expression below is computed


to obtain an overall measure of the importance of .  This measure is called the raw permutation accuracy importance score for the  variable.  Assuming the B raw scores are independent from tree to tree, we can compute a straightforward estimate of the standard error by computing the standard deviation of the  values.  Dividing the average raw importance scores from each bootstrap by the standard error gives what is called the mean decrease in accuracy for the  variable.   

Random Forest Example:  Chemical Solubility (not diamonds, hurray!)
Datafiles:  Solubility(train).csv and Solubility(test).csv

> Solu.train = read.table(file.choose(),header=T,sep=”,”)
> Solu.test = read.table(file.choose(),header=T,sep=”,”)

> names(Solu.train)
[image: ]

The response is the  and there are  potential predictors!

> dim(Solu.train)
[1] 951 228
> dim(Solu.test)
[1] 316 228

We will begin by fitting a baseline random forest with all of the tuning parameters (which are described below) set to their default settings.

> solu.rf = randomForest(log10sol~.,data=Solu.train)
> solu.rf

Call:
 randomForest(formula = log10sol ~ ., data = Solu.train) 
               Type of random forest: regression
                     Number of trees: 500
No. of variables tried at each split: 76

          Mean of squared residuals: 0.4257285
                    % Var explained: 90.28
Additional settings, i.e. tuning parameters, in fitting a random forest using randomForest:
ntree – number of trees to grow, like B or nbagg in bagging
mtry – number of predictors to choose randomly for each split (default = /3 for regression problems and for classification problems.)
nodesize – minimum size of the terminal nodes in terms of the number of observations contained in them, default is 1 for classification problems and 5 for regression problems.  Larger values here speed of the fitting process because trees in the forest will not be as big.
maxnodes – maximum number of terminal nodes a tree can have in the forest.  Smaller values will speed up fitting.















> plot(Solu.train$log10sol,predict(solu.rf),
xlab="Actual Log10(Solubility)",ylab="Predicted Log10(Solubility)")
> abline(0,1,lwd=3,col="blue")
[image: ]


Our first model seems pretty good, but we have no basis for comparison.  We can again use cross-validation to choose values for the tuning parameters to improve our model.

rf.sscv = function(fit,data,p=.667,B=100,mtry=fit$mtry,ntree=fit$ntree) {
    MSE = rep(0,B)
    MAE = rep(0,B)
    MAPE = rep(0,B)
    y = fit$y
    n = nrow(data)
    ss <- floor(n*p)
    for (i in 1:B) {
        sam = sample(1:n,ss,replace=F)
        fit2 = randomForest(formula(fit),data=data[sam,],mtry=mtry,ntree=ntree)
        ynew = predict(fit2,newdata=data[-sam,])
        MSE[i] = mean((y[-sam]-ynew)^2)
        MAE[i] = mean(abs(y[-sam]-ynew))
        MAPE[i] = mean((abs(y[-sam]-ynew)/y[-sam]))
    }
    RMSEP = sqrt(mean(MSE))
    MAEP = mean(MAE)
    MAPEP = mean(MAPE)
    cat("RMSEP\n")
    cat("===============\n")
    cat(RMSEP,"\n\n")
    cat("MAE\n")
    cat("===============\n")
    cat(MAEP,"\n\n")
    cat("MAPE\n")
    cat("===============\n")
    cat(MAPEP,"\n\n")
    temp = data.frame(MSEP=MSE,MAEP=MAE,MAPEP=MAPE)
    return(temp)
}

> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=20,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.7256308 

MAE
===============
0.5284393 
Log10(Solubility) is 0 for several compounds, thus MAPE is infinite.

MAPE
===============
Inf 

> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=30,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.7126363 

MAE
===============
0.520465 








> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=40,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.7113822 

MAE
===============
0.5100485 

> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=50,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP	
===============
0.7050137 

MAE
===============
0.5101033 

> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=60,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.7067367 

MAE
===============
0.5094528 

> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=70,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP	
===============
0.6929079 

MAE
===============
0.4995794 


> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=80,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.6924968 

MAE
===============
0.501014 


> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=90,ntree=500)
> results = rf.sscv(solu.rf,data=Solu.train,B=20)
RMSEP
===============
0.7239825 

MAE
===============
0.5218389 










For our final random forest for these data we will use mtry = 80 and ntree =500.

> solu.final = randomForest(log10sol~.,data=Solu.train,mtry=80,ntree=500)
> solu.final

Call:
 randomForest(formula = log10sol ~ ., data = Solu.train, mtry = 80,ntree = 500) 
               Type of random forest: regression
                     Number of trees: 500
No. of variables tried at each split: 80

          Mean of squared residuals: 0.4278436
                    % Var explained: 90.23


> plot(Solu.train$log10sol,predict(solu.final),xlab="Actual Solubility",
  ylab = "Predicted Solubility")
> abline(0,1,lwd=3,col="blue")
 [image: ]





As there are 227 predictors in our model, it would be helpful to know which are important.  The function varImpPlot in the randomForest library will plot the most important predictors in the forest.

> varImpPlot(solu.final)
[image: ]


How does solubility change as a function of the top four numeric predictors?  The command partialPlot in the randomForest library will display relationship between the response and the predictor of interest.
> par(mfrow=c(2,2))
> partialPlot(solu.final,Solu.train,MolWeight)
> partialPlot(solu.final,Solu.train,NumCarbon)
> partialPlot(solu.final,Solu.train,NumNonHBonds)
> partialPlot(solu.final,Solu.train,SurfaceArea1)

[image: ]


The plotmo package is a general plotting package for plotting models of various types including random forest.

> plotmo(solu.final)
[image: ]


Finally we predict the  of the test cases.

> ypred = predict(solu.final,newdata=Solu.test)
> PredAcc(Solu.test$log10sol,ypred)
RMSEP
===============
0.6470864 

MAE
===============
0.4559606 

Nice!



Tasks

1. Build a random forest using Chicago Homes training data set and then predict the list prices of homes in the Chicago Homes test set.  Again we will not use ZIP code in the modeling process.

 library(randomForest)
 library(plotmo)

 ChiTrain = read.table(file.choose(),header=T,sep=”,”)
 ChiTest = read.table(file.choose(),header=T,sep=”,”)

 ChiTrain2 = ChiTrain[,-3]
 ChiTest2 = ChiTest[,-3]

 home.rf = randomForest(log(ListPrice)~.,data=ChiTrain)
 home.rf
 varImpPlot(home.rf)
 par(mfrow=c(2,2)
 partialPlot(home.rf,ChiTrain2,ImputedSQFT)
 partialPlot(home.rf,ChiTrain2,BEDS)
 partialPlot(home.rf,ChiTrain2,LATITUDE)
 partialPlot(home.rf,ChiTrain2,LONGITUDE)
 par(mfrow=c(1,1))
 ypredlog = predict(home.rf,newdata=ChiTest)
 ypred = exp(ypredlog)
 PredAcc(ChiTest$ListPrice,ypred)

Remember you can use the rf.sscv() function to help find you tuning parameters.  You can use this function to find best model using the log scale response and then convert your final predictions for the list prices of the test set homes.

           Who can build the random forest for these data?  

















Boosting

Boosting, like bagging, is way to combine or “average” the results of multiple trees in order to improve their predictive ability.  Boosting however does not simply average trees constructed from bootstrap samples of the original data, rather it creates a sequence of trees where the next tree in sequence essentially uses the residuals from the previous trees as the response. Thus each successive tree in the sequence of trees is trying to explain the unexplained variation from the previous tree.  This type of approach is referred to as gradient boosting. Using the squared error as the measure of fit, the Gradient Tree Boosting Algorithm is given below.
[image: ]

Gradient Tree Boosting Algorithm (Squared Error)

1. Initialize . 

2. For 
a) For  compute 
  which are simply the residuals from the previous tree.
b) Fit a regression tree using  as the response, giving terminal node regions .
c) For  compute the mean of the residuals in each of the terminal nodes, call these 
d) Update the model as follows:

                  The parameter  is a shrinkage parameter which can be tweaked
                  along with  and  to improve cross-validated predictive performance.

3. Output .

4. Stochastic Gradient Boosting uses the same algorithm as above, but takes a random subsample of the training data (without replacement), and grows the next tree using only those observations.  A typical fraction for the subsamples would be ½ but smaller values could be used when n is large.

The authors of Elements of Statistical Learning recommend using  for the number of terminal nodes in the regression trees grown at each of the M steps.  For classification trees smaller values of are used, with 2 being optimal in many cases. A two terminal node tree is called a stump.  Small values of  have been found to produce superior results for regression problems, however this generally will require a large value for M.   For example, for shrinkage values between .001 and .01 it is recommended that the number of iterations be between 3,000 and 10,000.  Thus in terms of model development one needs to consider various combinations of and M.
  
The algorithm as presented above looks a bit daunting at first, however the graphic below simplifies the boosting concept considerably.

[image: ]Notice that  in this diagram.  The interaction depth is the number of splits mimus one, i.e.

# splits .

Models                                                                  

Here M = 49, so the final model is simply,



The gbm function in the library of the same name will fit a boosted regression tree.  It has numerous settings, some of which that are required and some that are optional.  The basic function call for a boosted regression tree with a numeric response  is shown below.  This was taken from the help file for gbm with default settings shown.

gbm(formula = formula(data),     use of y~. notation is fine.
    distribution = "bernoulli",  you must set this to “gaussian” for a numeric                  
                                                                                   response.
     data = list(),	         definitely needs this to go along with wild card model 
                                                                                             specification.  All variables besides response must be 
                                                                                             valid predictors ()in the data frame.
    weights,
    var.monotone = NULL,
    n.trees = 100,		   number of layers  in the notation above.
    interaction.depth = 1,	   , by default trees will have two terminal nodes, 
                                                                                            i.e. a single split on single variable.
    n.minobsinnode = 10,	   will not allow splits that result in less than 10 
                                                                                             observations in a terminal node.
    shrinkage = 0.001,		   , the shrinkage parameter, small values generally 
                                                                                   have better predictive performance, but require 
                                                                                   more iterations.
    bag.fraction = 0.5,		   will random select 50% of the cases at each stage to fit 
                                                                                             the next tree (or layer).
    train.fraction = 1.0,        will use all data to train the model. Values less than 1.0 
                                                                                             will split data into a training and validation sets.
    cv.folds=0,			   setting to 5 or 10 will perform k-fold cross-validation 
                                                                                             internally to estimate prediction error.
    keep.data = TRUE,	   
    verbose = TRUE,		   will print fitting progress on screen.
    class.stratify.cv=NULL,
    n.cores = NULL)              change to # of cores on your computer if you have 
                                                                                            multiple processors on your machine, like me .

Let’s consider some examples.

Boosted Tree Example: Diamond Data
Using the training, validation, and test sets we have used previously we will develop boosted tree models using the training data and validate their performance using the validation set.   Once we have chosen the “best” boosted tree using this process, we will give our final predictions for the test cases.

Here is the code we used to create these three data sets.

> Diamonds = read.table(file.choose(),header=T,sep=",")
> diam.train = Diamonds[Diamonds$Test==0,-10]
> diam.valid = Diamonds[Diamonds$Test==1,-10]
> diam.test = Diamonds[Diamonds$Test==2,-10]

> diam.gbm = gbm(log(Price)~.,data=diam.train,distribution="gaussian",n.trees=5000,shrinkage=.01,interaction.depth=4,bag.fraction=0.5,train.fraction=.8,n.minobsinnode=5,cv.folds=5,keep.data=T,verbose=T)
Iter   TrainDeviance   ValidDeviance   StepSize   Improve
     1        0.2971          1.1930     0.0100    0.0049
     2        0.2923          1.1807     0.0100    0.0046
     3        0.2875          1.1687     0.0100    0.0048
     4        0.2830          1.1569     0.0100    0.0047
     5        0.2784          1.1451     0.0100    0.0048
     6        0.2738          1.1332     0.0100    0.0044
     7        0.2694          1.1232     0.0100    0.0046
     8        0.2651          1.1123     0.0100    0.0043
     9        0.2609          1.1013     0.0100    0.0040
    10        0.2568          1.0903     0.0100    0.0042
    20        0.2198          0.9958     0.0100    0.0033
    40        0.1631          0.8374     0.0100    0.0024
    60        0.1238          0.7178     0.0100    0.0016
    80        0.0962          0.6255     0.0100    0.0011
    . . .      . . .           . . .     . . .      . . .
  4840        0.0029          0.0686     0.0100   -0.0000
  4860        0.0029          0.0686     0.0100   -0.0000
  4880        0.0029          0.0685     0.0100   -0.0000
  4900        0.0029          0.0683     0.0100   -0.0000
  4920        0.0029          0.0680     0.0100   -0.0000
  4940        0.0029          0.0679     0.0100   -0.0000
  4960        0.0029          0.0679     0.0100   -0.0000
  4980        0.0029          0.0677     0.0100   -0.0000
  5000        0.0029          0.0677     0.0100   -0.0000
Verbose obviously provides a lot of detail about the fitted model that does not look particularly useful. We can plot the CV, Test/Validation set, and OOB performance results using the gbm.perf().  This function will create a plot of mean squared error vs. the number of boosting iterations, which is the number layers in the diagram above.  The method used to determine the optimal number is determined by the argument to the method= option in the gbm.perf function.  Options are “cv”, “test” and “OOB”.  Examples are shown below.

> diam.gbm
gbm(formula = log(Price) ~ ., distribution = "gaussian", data = diam.train, 
    n.trees = 5000, interaction.depth = 4, n.minobsinnode = 5, 
    shrinkage = 0.01, bag.fraction = 0.5, train.fraction = 0.8, 
    cv.folds = 5, keep.data = T, verbose = T)
A gradient boosted model with gaussian loss function.
5000 iterations were performed.
The best cross-validation iteration was 3357.
The best test-set iteration was 4985.
There were 8 predictors of which 8 had non-zero influence.

> gbm.perf(diam.gbm,method="OOB")
[1] 1107
Warning message:
In gbm.perf(diam.gbm, method = "OOB") :
  OOB generally underestimates the optimal number of iterations although predictive performance is reasonably competitive. Using cv.folds>0 when calling gbm usually results in improved predictive performance.

[image: ]
> gbm.perf(diam.gbm,method="test")
[1] 4985
> gbm.perf(diam.gbm,method="cv")
[1] 3357

[image: ]
Let’s examine the quality of the fit to the training data using the optimal number of iterations determined by 5-fold cross-validation.

> ypred = predict(diam.gbm,newdata=diam.train,n.trees=3357)
> plot(log(diam.train$Price),ypred,xlab="Actual log(Price)",ylab="Fitted log(Price)")
> abline(0,1,lwd=3,col="blue")
[image: ]The model appears to underestimate the price of the most expensive diamonds.

Examining the quality of the fit in the original scale we have the following.
> ypred = exp(ypred)
> plot(diam.train$Price,ypred,xlab="Actual Price ($)",ylab="Fitted Price ($)")
> abline(0,1,lwd=3,col="blue")
[image: ]The underfitting is more pronounced in the original scale.



After extensive experimentation with n.trees, shrinkage, and interaction.depth I arrived at the following reasonable model, though it is unlikely to be the “optimal” one.

> diam.gbm = gbm(formula = log(Price) ~ ., distribution = "gaussian",
    data = diam.train, n.trees = 100000, interaction.depth = 1, n.minobsinnode = 5, 
    shrinkage = 0.0025, bag.fraction = 0.5, train.fraction = 0.8, 
    cv.folds = 5, keep.data = T, verbose = F)

> ypred = predict(diam.gbm,newdata=diam.train,n.trees=40339)
> plot(log(diam.train$Price),ypred,xlab="Actual log(Price)",ylab="Fitted log(Price)")
> abline(0,1,lwd=3,col="blue")
[image: ]
> ypred = exp(ypred)
> plot(diam.train$Price,ypred,xlab="Actual Price ($)",ylab="Fitted Price ($)")
> abline(0,1,lwd=3,col="blue")
[image: ]


Next we will use this boosted tree model to predict the price of the validation diamonds in both the log and original scale.
> ypred = predict(diam.gbm,newdata=diam.valid,n.trees=40339)
> plot(log(diam.valid$Price),ypred,xlab="Actual log(Price)",ylab="Predicted log(Price)",main="Predictions for Validation Diamonds")
> abline(0,1,lwd=3,col="blue")
[image: ]

> ypred = exp(ypred)
> plot(diam.valid$Price,ypred,xlab="Actual Price ($)",ylab="Predicted Price ($)",main="Predictions for Validation Diamonds")
> abline(0,1,lwd=3,col="blue")

[image: ]
Again we see underestimation of the prices for the most expensive diamonds in the validation set.
> PredAcc(ypred,diam.valid$Price)
   RMSEP      MAE     MAPE
1 594.0191 374.3965 8.685138	

> diam.mlr = lm(log(Price)~poly(Carats,3)+Clarity*Color + Cut + TDdiff + TDratio,data=diam.train)

> ypred = predict(diam.mlr,newdata=diam.valid)
> ypred = exp(ypred)
> PredAcc(ypred,diam.valid$Price)
RMSEP
===============
493.787 

MAE
===============
333.2352 

MAPE
===============
8.220324


Predicting for the test cases and comparing.

> ypred = predict(diam.gbm,newdata=diam.test,n.trees=40923)
> plot(log(diam.test$Price),ypred,xlab="Actual log(Price)",ylab="Predicted log(Price)",main="Predictions for Test Diamonds")
> abline(0,1,lwd=3,col="blue")
[image: ]  [image: ]
> ypred = exp(ypred)
> plot(diam.test$Price,ypred,xlab="Actual Price ($)",ylab="Predicted Price ($)",main="Predictions for Test Diamonds")
> abline(0,1,lwd=3,col="blue")

From Boosted TreeFor these data, it seems that the MLR model is superior to models using common predictive analytic tools. 

> PredAcc(diam.test$Price,ypred)
     RMSEP      MAE     MAPE
1 599.8503 354.8801 7.621739

From MLR model
> PredAcc(diam.test$Price,ypred)

     RMSEP    MAE     MAPE
1 504.8733  326.18  7.953477




Boosted Tree Example: Solubility Data
For comparison purpose I first fit a stepwise reduced MLR model using all 228 of the predictors.
The stepwise reduction process takes a LONG time in R so don’t run this code.  We also fit our “best” random forest model, and then develop a boosted tree model and compare performance in predicting the  of the test chemicals.

> Solu.train = read.table(file.choose(),header=T,sep=”,”)
> Solu.test = read.table(file.choose(),header=T,sep=”,”)


Multiple Linear Regression
> solu.mlr = lm(log10sol~.,data=Solu.train)
> solu.step = step(solu.mlr)  takes a long time!
> ypred = predict(solu.step,newdata=Solu.test)
> PredAcc2(Solu.test$log10sol,ypred)
RMSEP
===============
0.7949144 

MAE
===============
0.5849546

Random Forest
> library(randomForest)
> solu.rf = randomForest(log10sol~.,data=Solu.train,mtry=80,ntree=500)
> solu.rf

Call:
 randomForest(formula = log10sol ~ ., data = Solu.train, mtry = 80,      ntree = 500) 
               Type of random forest: regression
                     Number of trees: 500
No. of variables tried at each split: 80

          Mean of squared residuals: 0.4222973
                    % Var explained: 89.91
> ypred = predict(solu.rf,newdata=Solu.test)
> PredAcc2(Solu.test$log10sol,ypred)
RMSEP
===============
0.6475402 

MAE
===============
0.4561452

Boosted Trees  
(Note: Did not fine tune this model much, just tried a few settings for n.trees, shrinkage, & interaction.depth)
> library(gbm)

> solu.gbm = gbm(log10sol~.,data=Solu.train,distribution="gaussian",
n.trees=10000,shrinkage=.05,interaction.depth=5,bag.fraction=0.5,train.fraction=.8,n.minobsinnode=5,cv.folds=5,keep.data=T,verbose=F)




> solu.gbm
gbm(formula = log10sol ~ ., distribution = "gaussian", data = Solu.train, 
    n.trees = 4000, interaction.depth = 7, n.minobsinnode = 5, 
    shrinkage = 0.025, bag.fraction = 0.5, train.fraction = 0.8, 
    cv.folds = 5, keep.data = T, verbose = F)
A gradient boosted model with gaussian loss function.
10000 iterations were performed.
The best cross-validation iteration was 769.
The best test-set iteration was 1896.

> ypred = predict(solu.gbm,newdata=Solu.test,n.trees=769)
> PredAcc2(Solu.test$log10sol,ypred)
> PredAcc2(Solu.test$log10sol,ypred)
RMSEP
===============
0.6209719 

MAE
===============
0.4435755

For these data the boosted tree outperforms the other modeling methods we have considered.



Treed Regression

In Treed Regression a tree is grown where the terminal nodes contain a traditional model.  For example, in each terminal node we might fit an MLR regression model to the observations in that node. 
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There are two packages in R that perform treed regression, Cubist and party.  We will use the implementation in Cubist for regression problems where the response (Y) is numeric.  The basic function for fitting a treed MLR regression model is cubist().
cubist(x, y, 
       committees = 1, neighbors=0,
       control = cubistControl(), ...)
Arguments
	x
	a matrix or data frame of predictor variables. Missing data are allowed but (at this time) only numeric, character and factor values are allowed. 

	y
	a numeric vector of outcome 

	committees
	an integer: how many committee models (e.g.. boosting iterations) should be used? 

	control
	options that control details of the cubist algorithm. See cubistControl 



neighbors    number of nearest neighbors to consider in correcting the prediction (0 to 9).
The neighbors option specifies whether or not to use nearest neighbors in making predictions.   The idea behind nearest-neighbors is outlined on the following page and is taken from the website www.rulequest.com.

For some applications, the predictive accuracy of a rule-based model can be improved by combining it with an instance-based or nearest-neighbor model. The latter predicts the target value of a new case by finding the k most similar cases in the training data, and averaging their target values.
Cubist employs an unusual method for combining rule-based and instance-based models. Cubist finds the k training cases that are "nearest" (most similar) to the case in question. Then, rather than averaging their target values directly, Cubist first adjusts these values using the rule-based model. Here's how it works:
Suppose that x is the case whose unknown target value is to be predicted, and  is one of x's nearest neighbors in the training data. The target value of y is known: let us call it T(). The rule-based model can be used to predict target values for any case, so let its predictions for x and  be M(x) and M() respectively. The model then predicts that the difference between the target values of x and  is M(x)-M(). The value of x predicted by neighbor  is adjusted to reflect this difference, so that Cubist uses T()+M(x)-M() instead of 's raw target value. 

The neighbors option instructs Cubist to use composite models of this type. Now for the value of k, the number of nearest neighbors to be used the allowable range is from 0 to 9. We can use cross-validation to choose “optimal” values for the number of committees and the number of nearest-neighbors to use.
We now consider the usual examples.

Cubist Example: Diamond Prices
Again using the training, validation, and test sets for these data we will use treed regression and hopefully arrive at a model that outperforms MLR and the other tree-based methods.
> library(Cubist)
> names(diam.train)
[1] "Price"   "Carats"  "Color"   "Clarity" "Depth"   "Table"   "Cut"     "TDdiff" 
[9] "TDratio"

> X = diam.train[,-1]
> y = log(diam.train$Price)

> diam.cubist = cubist(X,y)
> summary(diam.cubist)

Call:
cubist.default(x = X, y = y)

Cubist [Release 2.07 GPL Edition]  Tue May 17 12:35:11 2016
---------------------------------

    Target attribute `outcome'

Read 1613 cases (9 attributes) from undefined.data

Model:

  Rule 1: [140 cases, mean 7.089416, range 6.907755 to 7.471363, est err 0.070827]

    if
	Carats <= 0.48
	Clarity in {IF, VVS1, VVS2}
    then
	outcome = 5.891322 + 1.89 Carats + 0.008 Table

  Rule 2: [109 cases, mean 7.500155, range 6.908755 to 8.781095, est err 0.081048]

    if
	Carats <= 0.94
	Color in {D, E, F, G}
	Clarity = VS1
    then
	outcome = 7.403948 + 3.25 Carats - 0.019 Depth - 0.009 Table

  Rule 3: [55 cases, mean 7.505598, range 6.944087 to 8.189799, est err 0.145368]

    if
	Carats <= 0.94
	Color in {J, K}
    then
	outcome = 17.16552 + 2.69 Carats - 11.4 TDratio + 0.182 Table
	          - 0.188 Depth

  Rule 4: [29 cases, mean 7.540391, range 6.925595 to 8.289289, est err 0.074009]

    if
	Carats <= 0.94
	Color = G
	Clarity in {VS1, VS2}
    then
	outcome = 5.73178 + 2.84 Carats

  Rule 5: [66 cases, mean 7.578313, range 6.907755 to 8.251143, est err 0.085354]

    if
	Carats <= 0.94
	Color in {H, I}
	Clarity in {SI1, SI2}
    then
	outcome = 43.453942 - 37.7 TDratio + 0.603 Table + 2.92 Carats
	          - 0.609 Depth

  Rule 6: [74 cases, mean 7.611935, range 6.908755 to 8.375169, est err 0.111157]

    if
	Carats <= 0.94
	Color in {D, E, F, G}
	Clarity = SI2
    then
	outcome = 6.284961 + 2.82 Carats - 0.035 Table + 1.4 TDratio

  Rule 7: [77 cases, mean 7.628675, range 6.907755 to 8.508152, est err 0.085406]

    if
	Carats <= 0.94
	Color in {D, E, F}
	Clarity = VS2
    then
	outcome = 6.35672 + 3.03 Carats - 0.01 Depth

  Rule 8: [24 cases, mean 7.664202, range 6.908755 to 8.189799, est err 0.078264]

    if
	Carats <= 0.94
	Color = I
	Clarity in {VS1, VS2}
    then
	outcome = 5.724354 + 2.6 Carats

  Rule 9: [106 cases, mean 7.668017, range 6.908755 to 8.534837, est err 0.087156]

    if
	Carats <= 0.94
	Color in {D, E, F, G}
	Clarity = SI1
    then
	outcome = 6.579948 + 3.04 Carats - 0.012 Depth - 0.3 TDratio

  Rule 10: [58 cases, mean 7.750666, range 6.926577 to 8.574707, est err 0.134884]

    if
	Carats <= 0.94
	Color in {H, I, J, K}
	Clarity in {IF, VVS1, VVS2}
    then
	outcome = 7.071347 + 2.26 Carats - 0.041 Table + 1.6 TDratio

  Rule 11: [31 cases, mean 7.855024, range 7.065613 to 8.408717, est err 0.076388]

    if
	Carats <= 0.94
	Color = H
	Clarity in {VS1, VS2}
    then
	outcome = 5.754416 + 2.76 Carats

  Rule 12: [64 cases, mean 7.951024, range 7.395721 to 8.85438, est err 0.097094]

    if
	Carats > 0.48
	Carats <= 0.94
	Color in {F, G}
	Clarity in {IF, VVS1, VVS2}
    then
	outcome = 6.175356 + 2.74 Carats

  Rule 13: [48 cases, mean 7.966398, range 7.520235 to 9.207937, est err 0.063216]

    if
	Carats > 0.48
	Color in {D, E}
	Clarity = VVS2
    then
	outcome = 6.491923 + 2.97 Carats - 0.016 Table + 0.6 TDratio

  Rule 14: [51 cases, mean 8.077394, range 7.539559 to 9.157361, est err 0.117837]

    if
	Carats > 0.48
	Color in {D, E}
	Clarity in {IF, VVS1}
    then
	outcome = -72.608222 + 89 TDratio - 1.471 Table + 1.303 Depth
	          + 3.03 Carats

  Rule 15: [20 cases, mean 8.315283, range 7.936303 to 9.128805, est err 0.088189]

    if
	Carats > 0.94
	Color = K
	Clarity in {SI1, SI2}
    then
	outcome = 6.778476 + 1.16 Carats - 0.3 TDratio + 0.005 Table

  Rule 16: [59 cases, mean 8.447293, range 7.990238 to 9.208739, est err 0.076435]

    if
	Carats > 0.94
	Color = J
	Clarity in {SI1, SI2}
    then
	outcome = 8.11659 + 1.18 Carats - 0.4 TDratio - 0.012 Depth

  Rule 17: [45 cases, mean 8.486957, range 7.991592 to 9.130215, est err 0.069873]

    if
	Carats > 0.94
	Color = I
	Clarity = SI2
    then
	outcome = 22.479786 - 15.1 TDratio + 0.23 TDdiff + 1.32 Carats
	          + 0.014 Table - 0.022 Depth

  Rule 18: [113 cases, mean 8.552159, range 7.990238 to 9.208639, est err 0.068193]

    if
	Carats > 0.94
	Color in {F, G, H}
	Clarity = SI2
    then
	outcome = 10.539928 + 1.41 Carats - 2.6 TDratio + 0.037 Table
	          - 0.054 Depth

  Rule 19: [31 cases, mean 8.580795, range 8.229777 to 9.043577, est err 0.095577]

    if
	Carats > 0.94
	Color in {J, K}
	Clarity = VS2
    then
	outcome = 7.169456 + 1.08 Carats

  Rule 20: [40 cases, mean 8.580815, range 8.113426 to 9.21014, est err 0.051344]

    if
	Carats > 0.94
	Color = I
	Clarity = SI1
    then
	outcome = 8.038007 + 1.33 Carats - 0.7 TDratio - 0.015 Depth
	          + 0.009 Table

  Rule 21: [73 cases, mean 8.637917, range 8.251143 to 9.182661, est err 0.063547]

    if
	Carats > 0.94
	Color in {G, H}
	Clarity = SI1
    then
	outcome = 8.245455 + 1.39 Carats - 0.7 TDratio - 0.015 Depth
	          + 0.007 Table

  Rule 22: [35 cases, mean 8.644493, range 8.250098 to 9.20994, est err 0.076217]

    if
	Carats > 0.94
	Color in {D, E}
	Clarity = SI2
    then
	outcome = 11.23684 + 1.34 Carats - 2.8 TDratio + 0.036 Table
	          - 0.058 Depth

  Rule 23: [48 cases, mean 8.645463, range 8.210668 to 9.128913, est err 0.089350]

    if
	Carats > 0.94
	Color in {J, K}
	Clarity in {IF, VS1, VVS1, VVS2}
    then
	outcome = 13.094335 + 1.26 Carats - 5.1 TDratio + 0.051 TDdiff
	          + 0.025 Table - 0.04 Depth

  Rule 24: [49 cases, mean 8.689831, range 8.288786 to 9.156306, est err 0.090027]

    if
	Carats > 0.94
	Color in {D, E, F}
	Clarity = SI1
    then
	outcome = 11.230623 + 1.28 Carats - 0.063 Depth - 0.021 TDdiff
	          - 1.1 TDratio + 0.016 Table

  Rule 25: [47 cases, mean 8.788722, range 8.361007 to 9.21034, est err 0.115292]

    if
	Carats > 0.94
	Color = I
	Clarity in {IF, VS1, VS2, VVS1, VVS2}
    then
	outcome = 28.629283 - 21.4 TDratio + 0.323 TDdiff + 1.19 Carats

  Rule 26: [40 cases, mean 8.842575, range 8.423542 to 9.20914, est err 0.125265]

    if
	Carats > 0.94
	Color = H
	Clarity in {IF, VS1, VS2, VVS1, VVS2}
    then
	outcome = 18.950073 - 10.7 TDratio + 0.99 Carats + 0.147 Table
	          - 0.157 Depth

  


Rule 27: [59 cases, mean 8.946100, range 8.701679 to 9.208639, est err 0.083272]

    if
	Carats > 0.94
	Color in {D, E, F, G}
	Clarity = VS2
    then
	outcome = 12.115267 + 0.75 Carats - 3.7 TDratio + 0.059 Table
	          - 0.064 Depth

  Rule 28: [56 cases, mean 9.009788, range 8.698681 to 9.208739, est err 0.113267]

    if
	Carats > 0.94
	Color in {D, E, F, G}
	Clarity in {IF, VS1, VVS1, VVS2}
    then
	outcome = 24.890775 - 15.4 TDratio + 0.115 TDdiff + 0.75 Carats
	          + 0.124 Table - 0.145 Depth


Evaluation on training data (1613 cases):

    Average  |error|           0.088325
    Relative |error|               0.15
    Correlation coefficient        0.98


	Attribute usage:
	  Conds  Model

	  100%   100%    Carats
	   97%           Clarity
	   91%           Color
	          72%    Table
	          69%    TDratio
	          66%    Depth
	          15%    TDdiff


Time: 0.0 secs

> Xvalid = diam.valid[,-1]
> ypredlog = predict(diam.cubist,newdata=Xvalid)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
517.5964 

MAE
===============
332.3824 

MAPE
===============
8.301016 

Using the default settings we already competitive with other methods we have examined for these data.   We know flex the muscles a bit by using boosting and nearest neighbors.

> diam.cubist2 = cubist(X,y,committees=10)
> ypred = predict(diam.cubist2,newdata=X)
> plot(log(diam.train$Price),ypred,xlab="Actual log(Price)",ylab="Predict log(Price)")
> abline(0,1,lwd=3,col="blue")
> title(main="Fitted Values for Training Data")
> ypred = predict(diam.cubist2,newdata=X)
> ypred = exp(ypred)
> plot(diam.train$Price,ypred,xlab="Actual Price ($)",ylab="Fitted Price ($)”)
> abline(0,1,lwd=3,col="blue")
> title(main="Fitted Values for Training Data")
[image: ] [image: ]



> Xvalid = diam.valid[,-1]
> ypredlog = predict(diam.cubist2,newdata=Xvalid)
> ypred = exp(ypredlog)

> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
458.7293 

MAE
===============
305.9408 

MAPE
===============
7.598628 

This I believe is the best predictions we have had for the validation diamonds.   We can still potentially improve our predictions by adjusting our predictions using the nearest neighbors approach.

Using nearest neighbors to enhance our predictions.

> ypredlog = predict(diam.cubist2,newdata=Xvalid,neighbors=9)
> ypred = exp(ypredlog)
> PredAcc(diam.valid$Price,ypred)
RMSEP
===============
430.3995 

MAE
===============
285.4572 

MAPE
===============
7.179426 

Definitely the best yet.

Task

1. Build a Cubist model for the chemical solubility data.

 library(Cubist)

 Solu.train = read.table(file.choose(),header=T,sep=”,”)
 Solu.test = read.table(file.choose(),header=T,sep=”,”)

 Xtrain = Solu.train[,-1]
 Ytrain = Solu.train[,1]
 Xtest = Solu.test[,-1]
 ytest = Solu.test[,1]
 
 solu.cub = cubist(Xtrain,ytrain,extra stuff)
 summary(solu.cub)

	 ypred = predict(solu.cub,newdata=Xtest,extra stuff)

        PredAcc(ytest,ypred)

[bookmark: _GoBack]How does the Cubist model compare to our results with these data above?  
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Description

Various parameters that control aspects of the rpazt fit

Usage

rparc.control (minsplit = 20, minbucket = round (minsplit/3), cp = 0.01,
maxcompete = 4, maxsurrogate = 5, usesurrogate = 2, xval = 10,
surrogatestyle = 0, maxdepth = 30, ...)

Arguments

minsplic

minbucket

maxcompete
maxsurrogate

usesurrogate

xval

surrogatestyle

maxdepth

the minimum number of obsevations that must exist in a node in order for a spit to be attempted.

the minimum number of observations in any terminal <1ea£> node. If only one of minbucket or minsplit is specified, the code either
sets minsplit to minbucket*3 Of minbucket o minsplit/3, as appropriate.

‘complexity parameter. Any split that does not decrease the overall lack of fit by a factor of p s not attempted. For instance, with anova
spliting, this means that the overall R-squared must increase by cp at each step. The main role of this parameter s to save computing
time by pruning offsplits that are obviously not worthwhile. Essentially the user informs the program that any split which does not improve
the it by cp will likely be pruned off by cross-validation, and that hence the program need ot pursue it

the number of competitor splis retained in the output. It is useful to know not just which split was chosen, but which variable came in
second, third, etc.

the number of surrogate splits retained in the output. Ifthis is set to zero the compute time will be reduced, since approximately half of
the computational time (other than setup) is used in the search for surrogate splits

how to use surrogates in the splitting process. 0 means display only: an obsenvation with a missing value for the primary split ule is not
‘sent further down the tree. 1 means use surfogates, in order, to split subjects missing the primary variable: i all surogates are missing
the obsenvation is not split. For value 2 if all surrogates are missing, then send the obsenvation in the majority direction. A value of O
corresponds to the action of czee, and 2 to the recommendations of Breiman et al (1984).

‘number of cross-validations.

controls the selection of  best surrogate. Ifset to o (defaut) the program uses the total number of correct classification for a potential
surrogate variable, if set to 1 it uses the percent correct, calculated over the non-missing values of the surrogate. The first option more
severely penalizes covariates vith a large number of missing values

Set the maximum depth of any node of the final tree, with the root node counted s depth 0. Values greater than 30 pazt wil give
nonsense results on 32-bit machines

mop up other arguments.
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Edit

00,
itscontrolscp, minsplit=Fitscontrolsminsplit) {
MSE = rep(0,8)
MAE = rep(0,8)
MAPE = rep(0,8)
y = exp(Fitsy)
n = nrow(data)
ss < floor (n'p)
for (i in1:8) {
sam = sample(1:n,ss,replaceF)
itz = rpart(formula(fit),data-datalsam,],cp=cp,minsplit=minsplit)
ynew = exp(predict (fit2,newdata-datal-sam,1))

MSELi] = mean((y[-sam]-ynew)/2)
MAE[1] = mean(abs (y[-sam] -ynew))
MAPE[] = mean((abs(y[-sam]-ynew) /y[-sam]))

¥

RMSEP = sqrt (mean(MSE))

MAEP — mean(MAE)

MAPEP — mean(MAPE)

cat ("RMSEP\N")

car (" \n")

cat (RMSEP, "\n\n")

cat ("MaEP\n")

€t ("mmmmmmemeeee\n")

cat (MAEP, "\n\n")

cat ("MAPEP\N")

car (" \n")

cat (WaPEP, "\n\n")
Temp - data. frame (MSEP-VSE ,MAEP-MAE MAPEP-MAPE)
return(temp)

Save Cancel
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1. For b=1to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size 7, is reached.

Select m variables at random from the p variables.

Pick the best variable/split-point among the .

iii. Split the node into two daughter nodes.

i

2. Output the ensemble of trees {7;}F. RobertThshiani

Jerome Fredman

To make a prediction at a new point r:

The Elements of
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> names(Solu.train)

[1] "loglosol” "FPOOL” "FPO02” "FP003” "FPO04™ "FPOOS” "FPO0G” "FPOO7"
[9] "FP008™ "FP009" "FPO10™ UFPO1L" "FPO12" "FPO13" "FPOL4" "FPOLS"

[17] "FPO16" UFPOL7" "FPO18" "FPO19™ "FPO20" "FPO21" "FP0O22" "FP023"

[25] "FPO24" "FPO25" "FPO26" "FPO27" "FPO28" "FP029" "FP030" "FPO31"

[33] "FPO32" "FPO33" UFPO34" "FPO35” "FPO36" "FPO37" "FP038" "FP039"

[41] "FPO40" UFPO4L" UFPO42" UFPO43" UFPO44" "FPO45" "FP046" "FP0O4T7"

[49] "FPO48" UFP049" "FPOS0™ "FPOS1” "FPOS2" "FP053" "FPO54™ "FPO55"

[57] "FPO56" "FPOS7" "FPOS8™ "FPO59" "FPO60" "FPO61" "FP062" "FP063"

[65] "FPO64™ "FPO65” "FPO66" "FPO67" "FPO68" "FP069" "FPO70" "FPO7L"

[73] "FPO72" "FPO73" UFPO74" "FPO75" "FPO76" "FPO77" "FPO78" "FPO79"

[81] "FPO8O" "FPOSL" "FPO82" "FPO83" UFPO84™ "FPO8S" "FP086" "FPO87"

[89] "FPO88" "FPO89" "FP090™ "FPO9L” "FPO92" "FP093" "FP0O94™ "FP09S5"

[97] "FP096™ "FPO97" "FP098™ "FP099" "FP100™ "FP101" "FP102" "FP103"

[105] "FP104" "FP105” "FP106” "FP107" "FP108" "FP109" "FP110" “FP11"

[113] "FP112" UFP113" UEPLL4T UFP115” UFP116” UEPLL7 "FP118" "FP119"

[121] "FP120" UFP1217 UFP122" UFP123" UEP124” "FP125" "FP126" "FP127"

[129] "FP128" "FP129" "FP130" UFP131" UFP132" "FP133" "FP134" "FP135"

[137] "FP136" UFP1377 "FP138" UFP139" UFP140” "FP141" "FP142" "FP143"

[145] "FP144” UFP145” UFP146" UFPL47" UFP148" "FP149" "FP150" "FP151"

[153] "FP152" UFP153" UFP154” UFP155” "FP156" "FP157" "FP158" "FP159"

[161] "FP160" UFP161" UFP162" UFP163" UFP164” "FP165" "FP166" "FP167"

[169] "FP168" "FP169” "FP170" UEPL71" UEPL72" "FP173" "FP174" "EPL75"

[177] "FP176" UFPL77" "FP178" "FP179" "FP180" "FP181" "FP182" "FP183"

[185] "FP184" UFP185” "FP186" "FP187" "FP188" "FP189" "FP190" "FP191"

[193] "FP102" "FP193" UFPLO4™ "FP195” "FP196” "FP197" "FP198" "FP199"

[201] "FP200" "FP201" "FP202" "FP203" UFP204" "FP205" "FP206" "FP207"

[209] "FP208" "Molweight” "NumAtoms” "NumNonHAToms " "Numonds” "NumNonHgonds ™ "NumMultBonds” "NumRotBonds”

[217] "NumDblBonds" "NumAromaticBonds”  "Numkydrogen” "Numcarbon” "NumNitrogen” "Numoxygen” "Numsulfer” "Numchlorine”

[225] "NumHalogen” “NUmRiNgs” “HydrophilicFactor” "surfaceareal” “surfacearea2”
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